College of Engineering

Department of Civil Engineering

Theory of Plates and Shells CE 565 Credit and 3 / 3 (Lectures), 0 (Tutorials), 0 (Laboratory) **Contact hours** Required, or Elective **Elective** Stresses and deformations in a plate element. Theory of thin elastic plates. Classical solution of rectangular and circular plates. Numerical techniques of **Course Description** Rayleigh-Ritz. Large deflection theory of plates. Stresses and deformations in a shell element. Membrane and bending theories of thin shells. **Prerequisites** or Co-None requisites Students completing this course successfully will be able to: **Related Student Course Learning Outcomes (CLOs)** Outcomes (SO) CLO1. Recognize the behavior of plates and concepts of shells under different SO₁ types of loading and boundary conditions; formulate equilibrium equations. K1 CLO2. Recognize large deflection theory, buckling of plates, membrane, and SO₁ bending theories for circular cylindrical, conical, and spherical shells. K1 CLO3. Apply energy and approximate numerical techniques to plates and shells. SO₂ **Course** Learning CLO4. Idealize problems involving plates and shells under different types of SO₂ **Outcomes** loading and boundary conditions, using approximate numerical techniques; e.g. Rayleigh-Ritz method to obtain solutions to various plate problems. S1 CLO5. Solve problems involving cylindrical and spherical dome structures. S1 SO₂ CLO6. Use appropriate numerical techniques for static and stability analysis of SO₂ plates. S1 **CLO7.** Apply available finite element software to model and analyze real plate SO₂ and shell structure, interpret and present analysis results clearly. S1 CLO8. Demonstrate professional engineering and ethical values in assigned **SO6** projects and assignments, with high academic integrity. V1 SO 1 Recognize advanced engineering knowledge, concepts, and techniques to identify, interpret, and analyze complex and real-life engineering problems. Student SO 2 Provide solutions for complex and real-life engineering problems through critical thinking **Outcomes** and the use of modern engineering tools, and identify their impact on social, global, cultural, environmental, safety, and economic factors. related to this SO 6 Demonstrate scientific integrity, ethical responsibility, and academic values in scientific Course publications, research projects, and thesis work.

Topics Covered	List of Topics	Related CLOs
	1. Fundamentals of small-deflection plate bending theory	CLO1, CLO2, CLO3
	2. Bending of rectangular plates	CLO2
	3. Bending of circular plates	CLO2, CLO3
	4. Bending of plates of various shapes	CLO1, CLO3, CLO4
	5. Approximate numerical techniques	CLO3
	6. Large-deflection theory of thin plates-Buckling of plates	CLO2, CLO6
	7. Vibration of plates	CLO2, CLO3, CLO5
	8. Membrane and bending theories of thin shells.	CLO2
	9. A workshop on related topics	CLO7, CLO8
Textbook(s) and Other Required Material	• Eduard Ventsel and Theodor Krauthammer, "Thin Plates and Shells - Theory, Analysis, and Applications", Marcel Dekker, Inc. 2001.	
Grading System	Written assignments	15%
	Lecture Attendance	_
	Written midterm exam	35%
	Project submission	10%
	Final exam	40%
Instructors	Prof. Yassir M. Abbas; Office 2A65 Email: yabbas@ksu.edu.sa	
Date of Review	March 2025	